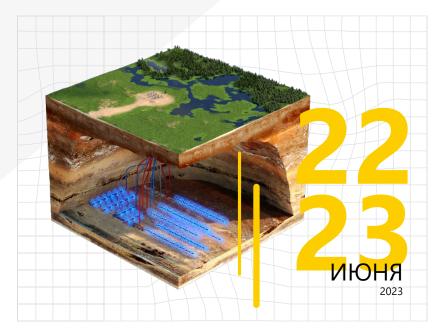

НАУКА В ПРОЕКТИРОВАНИИ И РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ – НОВЫЕ ВОЗМОЖНОСТИ



ТЮМЕНЬ

Повышение эффективности разработки месторождений нефти и газа путем реализации комплексного подхода по оптимизации проектных решений

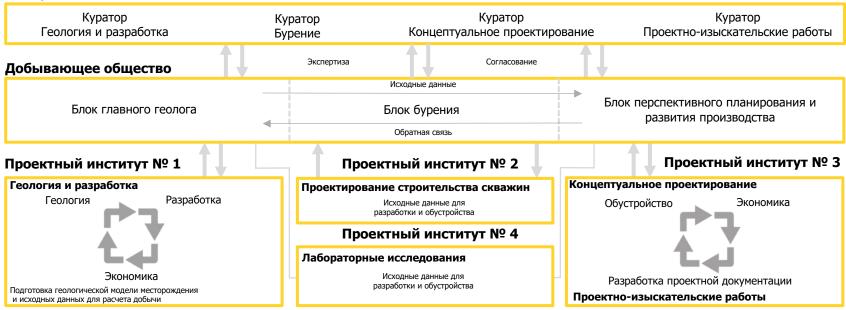
Николаев Владислав Николаевич

«ТомскНИПИнефть»

Обычный день главного геолога добывающего предприятия

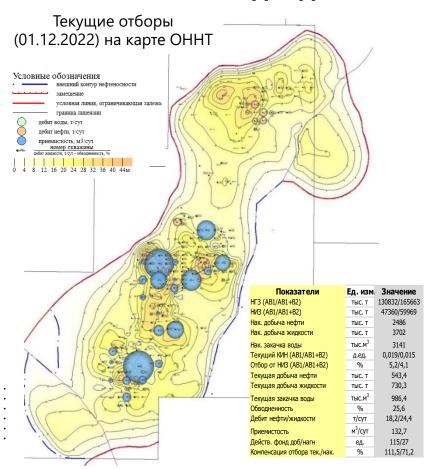
от 3ГД по Перспективному Планированию Кому ЗГД Главному Геологу

№ 1 от 22.06.2023 о расчете добычи


Служебная записка

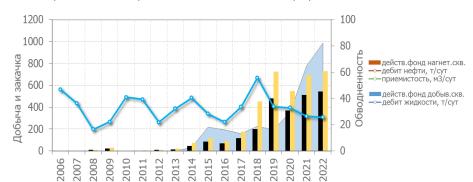
Уважаемый Владислав Николаевич!

Для расчета Долгосрочной программы развития/ новой итерации подготовки инвестиционного меморандума/ сдвижкой сроков ввода объекта X просим Вас в срок до 23.06.2023 актуализировать расчет профиля добычи всего месторождения на период 2023-2150 гг.


Базовая схема взаимодействия в ВИНК

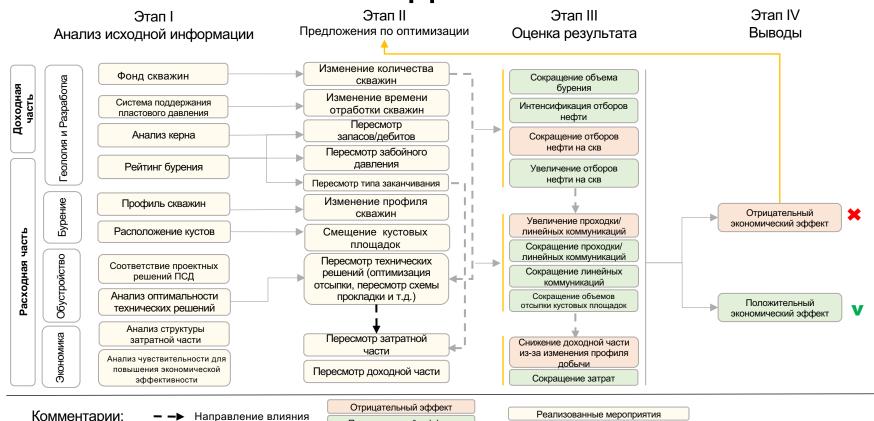
Центр

- Функциональное разделение кураторства направлений на всех уровнях;
- Большое количество **итеративных** взаимодействий по рассмотрению и согласованию материалов (исходных данных, предложений по оптимизации, результатов и т.д.) на всех уровнях.
- Снижение оперативности реагирования на потенциальные изменения и мультипликативная инертность на каждой последующей стадии.


Комплексный подход. Кейс 1

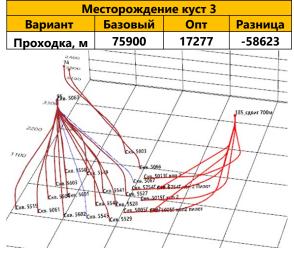
Куст	Статус разработки ПСД	Факт отсыпки	Период бурения	Ввод первой скважины	Кол-во скв.	PI (исх)	Ранжирование
1	ПСД* разработана в 2019	Работы не начаты	16.03 14.12.2025	02.06.2025	19	0,89	4
2	ПСД* - план 2022 год 2022 изменение схемы разбуривания (увеличение кол-ва скважин) ПСД* – на 3 кв. 2023	Работы не начаты	04.08 28.05.2026	06.09.2025	21	0,97	1
3	Новый куст, предпроектная проработка запланирована на 2023, точного срока нет	Работы не начаты	19.03 03.02.2026	21.05.2025	23	0,93	2
1	ПСД* разработана в 2022	Отсыпан	28.11.2025 - 25.01.2026	12.02.2025	15	0,54	6
2	ПСД* разработана в 2022	Работы не начаты	16.07.2025 - 12.10.2026	03.09.2025	23	0,38	7
3	ПСД* разработана в 2022	Отсыпан	22.03.2026 - 07.10.2027	29.07.2026	20	0,64	5
4	ПСД* разработана в 2021	Работы не начаты	27.05.2025 - 27.03.2026	09.08.2025	13	0,92	3

Утвержденные проектные решения


- В разбуренной зоне уплотнение рядов добывающих скважин, переход на рядную систему;
- В неразбуренной зоне в максимальных ННТ переход на рядную систему ННС с ГРП с расстоянием в рядах и между рядами 250 м;
- В краевых зонах обращенная 9-ти точечная система разработки 500 х 500 м.

Проектная команда

	Должность	Направление
	Начальник управления интегрированного и концептуального проектирования	Руководитель проекта
	Главный эксперт по разработке	Разработка
	Главный специалист отдела геологического сопровождения бурения и ЗБС	Геология и разработка
	Начальник отдела технологического контроля	Бурение
1	Заместитель начальника отдела экономического анализа проектов	Экономика
	Главный специалист отдела интегрированного проектирования	Концептуальное проектирование
	Руководитель проектного офиса	ПИР


Алгоритм выполнения работ по комплексному подходу повышения экономической эффективности

Положительный эффект

Пример оптимизации кустовой площадки

Условные обозначения:		
Проектные добывающие скважины	дебит воды, т/сут.	
Проектные нагнетательные скважины	дебит нефти, т/сут.	
Проектные скважины исходного варианта	Приемистость, м3/сут.	
	помер скважины	

		Колич	ество ске	ажин			Запасы				Входные г	параметры										План			
Версия рейтинга	Всего, без учета	Добыв	ающие	Нагнета с отра		Целевой пласт	Потенциальны е извлекаемые запасы	Длина ГУ ГС	Количество стадий МГРП	Обв-ть	Эфф. мощность	Проница- емость	KH	Скин общий	Рзаб	Тек. Рпл	Фж	Qн	ΣQн	ΣQж	Количество скважин	Отклонение Qн	Отклонение Qн	Отклонение Е Qн	Отклонение ОИЗ
	вспм	ГС	HHC	rc	HHC																				
	шт.	шт.	ш:	шт.	шт.		TMC.T	м	ед.	%	м	мД	мДм		атм	атм	м3/сут	т/сут	т/сут	т/сут	шт	т/сут	%	%	тыс.т.
Исходный	23		16		7	ЮС2/1, ЮС2/2	564	-		33	10.7	1.3	97.4	-5.3	100	340	53	32	725	1219					
Базовый	23		16		7	ЮС2/1, ЮС2/2	426	-		33	8.9	1.3	81.0	-5.3	85	342	55	32	729	1265	0	0	1%	1%	-138
ОПТ	4	2		2		ЮС2/1,	336	1000	8	31	8.8	1.4	24.6	-5.3	85	343	161	96	382	644	-19	64	202%	-48%	-90

Комментарии:

- Исходная система разработки рядная наклонно-направленные скважины с гидроразрывом пласта с расстоянием 250х250м.
 Оптимизированный вариант рядная система горизонтальных скважин с МГРПс расстоянием 400м между рядами.
- Сопоставимые уровни добычи нефти достигаются значительно меньшим количеством скважин.

аж, т/сут. – обводненность, %

- В связи с оптимизацией количества скважин на КП объем отсыпки сокращается.
- В рекомендуемом варианте рассчитана и подтверждена буримость всех траекторий.

Добыча нефти, тыс.тн.								
Исходный	300							
Базовый	226							
Оптимизированный (ППД 12 мес)	190							
Оптимизированный (ППД 24 мес)	181							
Истощение	110							
Обрискованный (ППД 12 мес)	173							

Изменение конструкции скважин

Схема реализации ОПР перехода на ГС

Базовый вариант – ННС (отрицательная экономика)

Оптимизация

«-» Основной ограничивающий фактор – высокие

затраты на эксплуатационное бурение (PI<1)

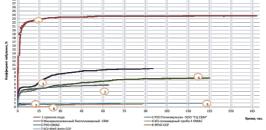
ОПР ГС, азимут 320⁰

Стабилизация угла, снижение скорости СПО изменение стратегии проводки

«-» Контролируемые технологические риски, при их реализации возможно ОПИ БРД.

«+» Оптимально с точки зрения разработки:

Переход на ГС, азимуты 230 и 260⁰


«-» Риски спонтанного увеличения обводненности.
Необходима статистика отработки.

«+» Оптимально с точки зрения геомеханической модели – максимальные окна по ЭЦП.

Рекомендации при бурении

Анализ применимости буровых растворов

При прохождении элементов КНБК через интервал угольного пропластка необходимо изменить режимы:

- При бурении исключить изменение траектории, проходить интервал (отягощенный углями) в стабилизации пространственного положения.
- При спуско-подъемных операциях скорость подъема/спуска КНБК в интервале углей ограничить до 0,1 м/с 0,2 м/с.
- При обратной проработке: ограничить частоту вращения ВСП до 20-40 об/мин, скорость подъема ограничить до 0,3 м/с.

	Пласт		Реком	ия при различ	іных зенитных	углах				
		Азиму	т 230°	Азиму	т 260°	Азиму	т 290°	Азимут 320°		
		ГС		ГС		ГС	<u> </u>	ГС		
		Скорость набора 1,2°/10 м	Скорость набора 2°/10 м							
с.	Ю0	60° 1,4-1,6	50° 1,35- 1,6	60° 1,45- 1,6	50° 1,4- 1,6	60° 1,5- 1,6	50° 1,45- 1,6	60° 1,5- 1,6	50° 1,45- 1,6	
-	Ю1	72° 1,25- 1,6	68º 1,25- 1,6	72º 1,25- 1,6	68º 1,25- 1,6	72° 1,3- 1,6	68° 1,3- 1,6	72° 1,3- 1,6	68° 1,3- 1,6	
	Ю2	78° 1,25- 1,45	78º 1,25- 1,45	78º 1,25- 1,45	78° 1,25- 1,45	78° 1,3- 1,5	78º 1,3- 1,5	78° 1,3- 1,4	78° 1,3- 1,4	

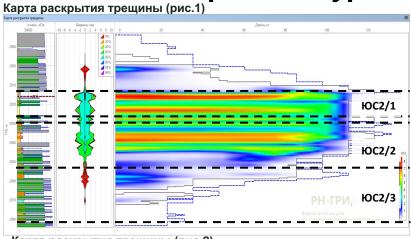
Цевтовые обозначения окон плотности бурового раствора для варианта с перекрытием Юс-Ю:

оконо бурового раствора 0, 2 и выше

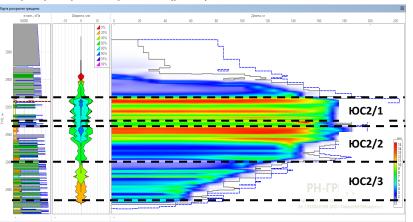
оконо бурового раствора 0,15

окно бурового раствора 0,05 и ниже

окно бурового раствора 0,05 и ниже


Реализация

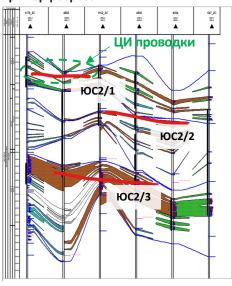
тех. риска


масштабирование

Влияние физически и конструкционно обоснованных значений зенитного угла на окно <u>буримости</u> недостаточно для построения траектории скважины с совместным бурением ЮО, Ю1 и Ю2.

Изменение стратегии бурения и ГРП

Карта раскрытия трещины (рис.2)


Для подбора оптимального (с точки зрения характеристик трещины) количества проппанта на 1 стадию ГРП был проведен ряд расчетов в ПО РН-ГРИД.

Инициация трещины ГРП проводилась с верхней пачки пласта ЮС2(1) — интервал проводки ЦИ представлен на схеме корреляции (рис. 3), тоннаж проппанта варьировался с шагом 10, расход — 3,8 м³/мин.

Для приобщения пласта **ЮС2(2)**, его упаковки и дальнейшего ограничения роста трещины в высоту рекомендуется закачивать **50 тонн проппанта за одну стадию ГРП** (рис.1).

Для вовлечения в разработку пласта **ЮС2(3)**, его упаковки рекомендуется закачивать свыше **200 тонн** (рис.2).

Пример разреза

Вариант оптимизации рассчитан на разработку ЮС2/1+ЮС2/2, ЮС2/3 предполагается разработка отдельной сеткой скважин.

Характеристики трещины

пласт	Проппант, т	Средняя концентрация проппанта, кг/м²	Полудлина, м	Закрепленная высота, м	Ширина, мм	Средняя проводимость по площади трещины, мД*м
ЮС2(1+2)	50	4.3	125	78	2.9	339.2
ЮС2(1+2+3)	250	9.3	199	120	5.9	728.2

<u>Рекомендуется корректировка стратегии проводки ГС</u> для минимизации рисков вскрытия угольных пластов

Ожидаемые результаты предложенных мероприятий

Условия

- Кросс функциональная проектная команда не знакомая с активом.
- Сжатые сроки (1,5 мес).

Перечень рекомендованных мероприятий

- Изменение конструкции добывающих скважин.
- Бурение пилотных стволов.
- Изменение стратегии проводки ГС и дизайна ГРП.
- Увеличение времени ввода скв.
- Уточнение геологической основы.
- Проведение расширенной программы исследований.
- Сокращение объема отсыпки КП.
- Увеличение запускной депрессии.
- Оптимизация точки отсыпки кустового основания.

Корректировки затронули как подземную так и наземную часть проекта

Месторождение	Куст	РІ Исходный	РІ ОПТ	PI PИCK
Х	1	0,89	1,50	0,93
Χ	2	0,97	1,76	1,02
X	3	0,93	1,73	1,02

С учетом оптимизационных мероприятий бурение рассмотренных кустовых площадок оказалось целесообразным

Комплексный подход. Кейс 2

Цели и ожидаемые результаты

 Подготовка обосновывающих материалов и экономических расчётов для выбора наиболее эффективного варианта развития двух газовых ЛУ.

Задачи

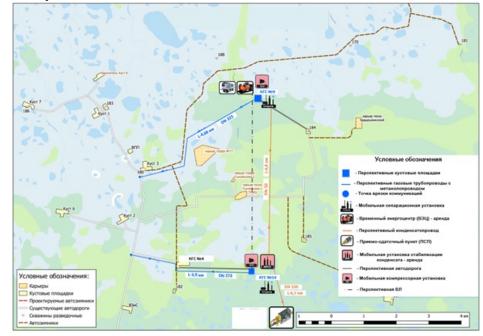
- Расчет профилей добычи.
- Разработка укрупненных технических решений.
- Расчет экономической эффективности и выбор рекомендуемого варианта.
- Расчет профилей добычи в рамках синергии двух ЛУ.
- Проработка технических решений по основным объектам инженерного обеспечения по рекомендуемому варианту.
- Формирование уточненной экономической оценки.

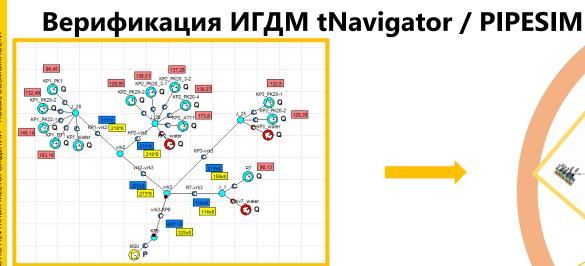
2

15

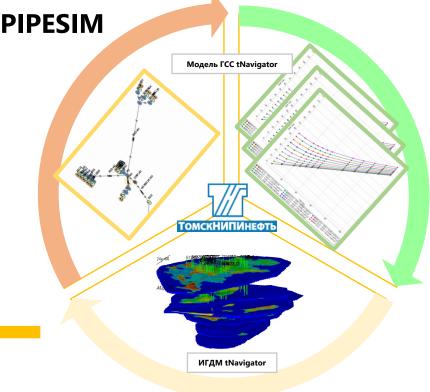
пластов

79


газа извл.

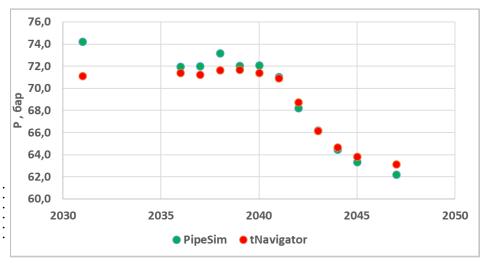

запасов

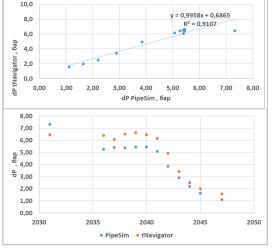
3


ср. кпрод тыс.м3/сут/ МПа

вариантов для расчета Обзорная схема ЛУ

				гдм						
Имя	Тип	Температура, °С	Давление, МПа	Расход газа в поверхностн ых условиях, тыс.ст.м3/сут	Расход жидкости в поверхностных условиях,ст.м3/с	Скорость газа в ГСК, м3/с	Имя	Тип	Давление, МПа	газа в поверхнос тных условиях
	Inlet	16,38	7,924	1255,80	9,98	4,92		Inlet	7,286	1250,00
KP1-vrk2	Outlet	13,40		1255,80	9,98	5,09	KP1-vrk2		6,936	
	ΔΡ		-0,357					ΔΡ	-0,349	
	Inlet	19,98		1200,10	7,47	5,04		Inlet	6,951	1199,98
KP2-vrk2	Outlet	19,82	7,566	1200,10	7,47	5,04	KP2-vrk2		6,936	
	ΔΡ		-0,016					ΔΡ	-0,014	
	Inlet	16,39		2455,90	17,48	6,31		Inlet	6,936	2449,98
vrk2-vrk3	Outlet	16,14		2455,90	17,48	6,34	4 vrk2-vrk		6,900	
	ΔΡ		-0,039					ΔΡ	-0,036	
	Inlet	20,00		750,00	2,86	4,99		Inlet	8,673	749,91
KP3-vrk3	Outlet	8,56		750,00	2,86	5,89	KP3-vrk3		6,900	
•	ΔΡ		-1,748					ΔΡ	-1,773	
•	Inlet	12,00	7,748	250,00	0,00	4,09		Inlet	7,144	250,00
• R7-vrk3	Outlet	9,31	7,526	250,00	0,00	4,16	R7-vrk3	Outlet	6,900	
	ΔΡ		-0,222					ΔΡ	-0,244	
•	Inlet	13,91		3456,10	19,02	6,15		Inlet	6,900	3449,89
vrk3-KP9	Outlet	8,80	6,700	3456,10	19,02	6,80	vrk3-KP9	Outlet	6,100	
	ΔΡ		-0,827				1	ΔΡ	-0,800	


Корректировка модели ГСС


- 1) Построение модели ГСС в NETWORK DESIGNER tNavigator, идентичной модели PIPESIM по протяженности и D участков трубопроводов
- 2) Сопоставление расчетов потерь давлений в моделях ГСС PIPESIM и ИГДМ tNavigator с опцией NETWORK
- 3) Итерационная корректировка VFP таблиц проблемных участков трубопроводов в модели ГСС в NETWORK DESIGNER tNavigator

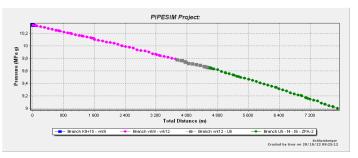
Контроль сопоставимости расчетов

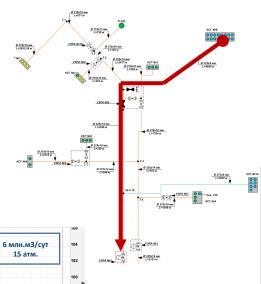
ТЭОИ Рекомендуемый вариант 2.1, к.9

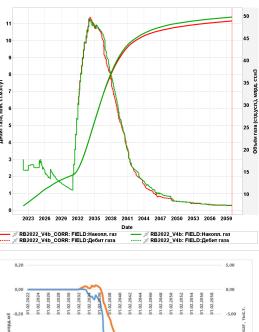
		T			PIPESIM				tNavigator		
Стаді	Наименованиє	Т.	Давление, ba 🔻	Потери давления, в	Температура, de ▼	Расход газа, msm3/ ▼	Скорость газа, т	▼	Давление, ba	Потери давления, b	Расход газа, msm3, ▼
2031	KP9 - U5	Вход	74,2	7,33	10,00	4557,9	7,68	7,33	71,1	6,4	4677,9
2036	KP9 - U5	Вход	72,0	5,27	9,77	4439,8	8,08	5,27	71,4	6,4	4533,6
2037	KP9 - U5	Вход	72,0	5,41	9,97	4486,5	8,18	5,41	71,2	6,1	4469,1
2038	KP9 - U5	Вход	73,2	5,39	9,96	4539,5	7,99	5,39	71,6	6,5	4525,6
2039	KP9 - U5	Вход	72,0	5,44	9,96	4491,3	8,20	5,44	71,7	6,6	4578,0
2040	KP9 - U5	Вход	72,1	5,45	9,96	4480,6	8,21	5,45	71,4	6,5	4524,7
2041	KP9 - U5	Вход	71,1	5,08	9,98	4254,0	8,07	5,08	70,9	6,2	4493,5
2042	KP9 - U5	Вход	68,2	3,85	9,99	3570,5	7,20	3,85	68,7	4,9	4248,2
2043	KP9 - U5	Вход	66,2	2,89	10,04	2915,2	6,28	2,89	66,1	3,4	3538,6
2044	KP9 - U5	Вход	64,5	2,20	10,07	2375,6	5,36	2,20	64,7	2,5	2886,5
2045	KP9 - U5	Вход	63,3	1,64	10,04	1942,0	4,43	1,64	63,8	2,0	2339,1
2047	KP9 - U5	Вход	62,2	1,12	10,03	1381,9	3,22	1,12	63,1	1,6	1922,6

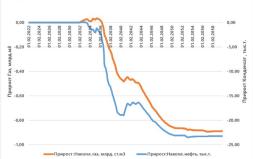
- Контроль давления и потерь в динамике при различных расходах
- Хорошая сходимость расчетов входного давления на участке трубопровода
- Сопоставимые расчеты потерь давления между узлами ГСС

Выявление проблемных участков ГСС

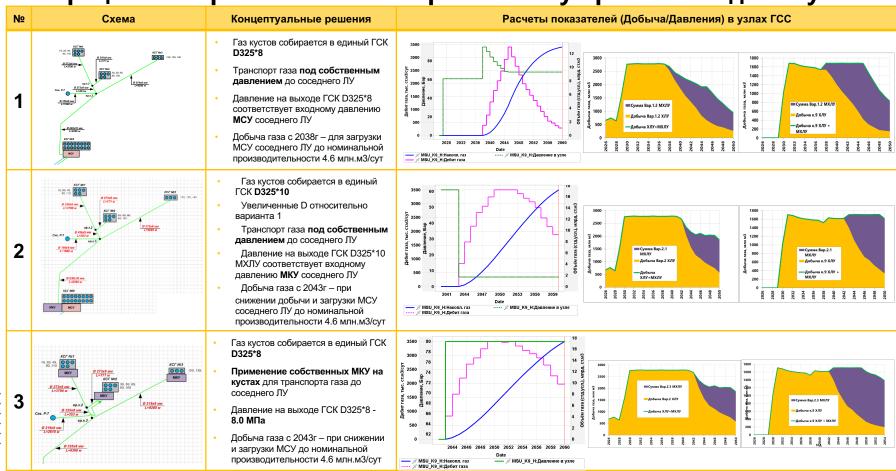

Корректировка модели ГСС

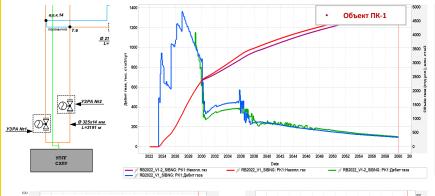

 Потери давления по трубопроводу от к.9 до 3ПА-2 по расчету в ПО PipeSim должны составлять ≈15 бар на пике добычи газа (≈6 млн.м3/сут.)

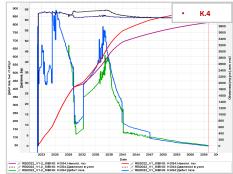

2) Расчетные потери давления в ИГДМ – 8 бар


6 млн.м3/сут

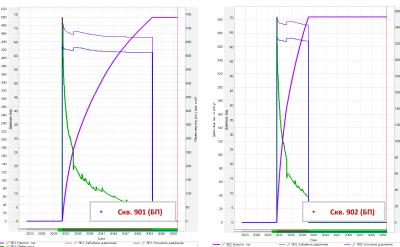
3) Уточнены VFP таблицы участка ГСК-1 между к.9 и 3ПА-2

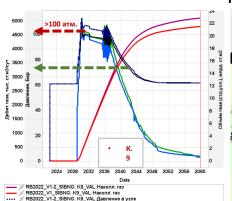



Влияние на профиль добычи


- 1) Сокращение добычи газа за проектный период на 0,89 млрд.м3
- 2) Максимальный уровень добычи без изменений

Итерационный расчет влияния вариантов обустройства на добычу


Оценка возможности эксплуатации скважин



Эффект от объединения коллекторов

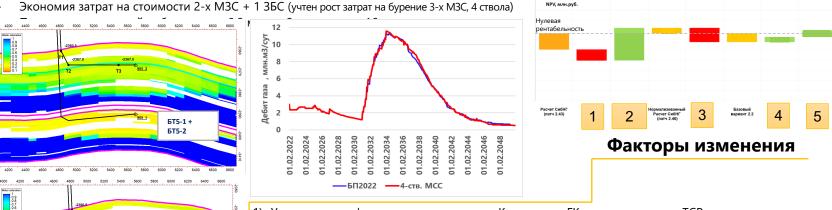
- Прогнозируется рост Р уст. по скважинам базового фонда при запуске скважин кк.9, 14.
- Потери добычи базового фонда по ПК-1 по причине сниженного Рпл до 75-85 атм
- Не возможность ввода в эксплуатацию проект. скв. 901, 902 ранее 2044г

RB2022_V1_SIBNG: K9_VAL:Давление в узле RB2022_V1-2_SIBNG: K9_VAL:Дебит газа RB2022_V1_SIBNG: K9_VAL:Дебит газа

Оптимизация проектных решений

Описание оптимизационного Варианта

Замена 6 скважин МЗС 2 ствола на 3 скважины МЗС 4 ствола


Кандидаты на объединение – скважины РЭБ 2022г, близких в плане и по разрезу

Скв.910/912 (AT6-7+AT8) Скв 912 905/916 ($\overline{b}T5-1 + \overline{b}T5-2$) Скв.905 1411/1410 ЗБС (БТ5-1, БТ5-3) Скв.1411

По скв.1410 (БТ12) делается ЗБС в плановые проектные точки 1411 ЗБС(ПК22)

Экономия затрат на стоимости 2-х МЗС + 1 ЗБС (учтен рост затрат на бурение 3-х МЗС, 4 ствола)

Ед. изм.	2.2_БАЗОВЫЙ	2.2_r
ШТ	24,0	22,0
ШТ	-	_
млн.т	1,662	1,613
млрд.м ³	31,853	31,430
доли ед	0,96	1,01
	шт шт млн.т млрд.м ³	шт 24,0 шт 1,662 млн.т 1,662 млрд.м ³ 31,853

- 1) Уточнение профиля в расчетах с учетом К усадк. для ГК согласно данным ТСР;
- 2) Актуализация показателей с учетом МК Компании вер. 2.46;
- 3) Адаптация экономических показателей под профиль, сформированный ТНИПИ в предпосылках базового варианта;
- Оптимизация количества скважин с МЗС (вар. 2.2г) с учетом изменения затрат на бурение;
- 5) Оптимизацией КВ по кустам и установке подготовки газа согласно предложений по оптимизации количества скважин на КП и обновленному профилю добычи (апсайд-фактор).

Комплексные оптимизационные мероприятия позволили сделать проект экономически эффективным

Синергия

Заключение. Предлагаемая схема взаимодействия

Центр

Куратор Геология и разработка Куратор проекта от Куратор Бурение Головной компании Куратор ПИР Куратор перспективное развитие Добывающее общество Блок главного геолога Куратор проекта от Блок бурения Добывающего общества Блок перспективного планирования и развития производства Проектный институт Геология и разработка Лабораторные исследования Куратор проекта от Проектирование строительства скважин Научного центра Концептуальное проектирование Проектно-изыскательские работы

Формирование проектных команд с участниками всего цикла проектирования разработки и добычи Стремление к минимизации количества проектных организаций работающих над проектом Выделение межблоковых кураторов для уличения координации работ

СПАСИБО ЗА ВНИМАНИЕ

«ТомскНИПИнефть»

Николаев Владислав Николаевич

+7 (965) 908 81 37

NikolaevVN@tomsknipi.ru

